Orthogonal Matrix Decompositions in Systemsand
نویسنده
چکیده
In this paper we present several types of orthogonal matrix decompositions used in systems and control. We focus on those related to eigenvalue and singular value problems and include generalizations to several matrices.
منابع مشابه
Extending Results from Orthogonal Matrices to the Class of P -orthogonal Matrices
We extend results concerning orthogonal matrices to a more general class of matrices that will be called P -orthogonal. This is a large class of matrices that includes, for instance, orthogonal and symplectic matrices as particular cases. We study the elementary properties of P -orthogonal matrices and give some exponential representations. The role of these matrices in matrix decompositions, w...
متن کاملdecompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials
For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...
متن کامل8 N ov 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials Tom
For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...
متن کاملOrthogonal Tensor Decompositions
We explore the orthogonal decomposition of tensors (also known as multidimensional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous examples to illustrate the difficulties in understanding such decompositions. We conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebr...
متن کاملComputing Orthogonal Decompositions of Block Tridiagonal or Banded Matrices
A method for computing orthogonal URV/ULV decompositions of block tridiagonal (or banded) matrices is presented. The method discussed transforms the matrix into structured triangular form and has several attractive properties: The block tridiagonal structure is fully exploited; high data locality is achieved, which is important for high efficiency on modern computer systems; very little fill-in...
متن کامل